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32.4). Note that a sharply defined heating wavefront (with infinite derivatives) exists 
only, if condition a + p > 1 is satisfied. For a $ fi < 1 the front is not sharply 

defined. 
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A method is proposed for calculating flows induced by fluid sucked into a jet 
outside the boundary layer region. The jet is simulated by a set of sinks whose 
intensity is specified in terms of known solutions of the boundary layer theory. 
With few exceptions [ 1 - 31 problems of the boundary layer theory related to 
jet-like flows of viscous fluids are solved for high Reynolds numbers. In such 

approximation the presence of suction of fluid into the jet is a distinctive fea- 
ture, which has the effect of inducing motion of the fluid in the space outside 
the jet. Since in the external region of flow the velocities of fluid motion and 
the Reynolds numbers are not high, the inertia terms in the Navier-Stokes equa- 

tions can be neglected. A fine jet can be simulated by a system of sinks distri- 
buted along its axis. The intensity of sinks is deremined by solutions which define 
jet-like flows within the limits of the boundary layer theory 14, 51. The linear 

problem of external flow thus formulated can be analytically solved for various 
kinds of jet-like fluid motions. Several examples are presented. 

1. External flow induced by L jet flowing from a narrow tube. 
We introduce a system of spherical coordinates with origin at the jet outlet and angle 8 
measured from the jet axis. We seek components of velocity and pressure in the form 

u, = + f(e), 0, = +- cp (e), + = ; F (0) (1 .I) 
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Linearizing the system of equations of motion [6], we have 

f” + f’ctge + 2F = 0 

-f’ + F’ = 0, f + ‘p’ + ‘pctg 0 = I) (1.3) 

Eliminating f and F , we obtain the equation 

cp’si$ 8 - q sin 0 cos 8 = h!f cos 20 $ N cos 0 $ R (1.3) 

where Al, N and R are arbitrary constants of integration. The general solution of 
(1.3) can be written as 

cp=A,sin&+- &+ As&g8 + A,sinBln(cQ -Zj-) (1.4) 

where A,, A,, A 3 and A, are certain new constants. From the last equation of sys- 
tem (1.2) we obtain 

f = - 2A1 cos 0 + As - A, 2 cm 0 111 ctg 
i ( -g-q 

Let US consider a jet propagating in a boundless space [ 11. From the condition that 
ve vanishes for 8 = x and that u, is bounded for 0 = 0 we have A z = il 3 and 

-4, = 0. Hence 
(p = Alsir + A,ctg + (1.5) 

We determine constant A, by the condition that the total discharge of fluid through the 

spherical surface s of arbitrary radius must be zero. Taking into consideration that the 
quantity 87cvr of fluid [4] is discharged through the part of the sphere so equal to the 

jet cross section, and neglecting the area of SO which is small in comparison with s, 
we obtain X 

+ 
c 7. , 

znr2ur si:10 d0 = - 8~tv 

0 

Using the equation of continuity, we reduce this relationship to 

limo,o 2nr sin 8 ~0 -1 - 8nv (I.6) 

Substituting Q = (V / I^) q (0) into (1.6) and allowing for (1.5). we obtain A 3= -2. 
The stream of external flow momentum is defined by 

II = 2nr2 T II,, c 

z 

OS 0 sin 0 d0 = 2x? 
ci 

-p+.‘q$ 
! 

cos 8 sin 8 d0 
;i 6 

Setting II = 0, we obtain A, T= 0. Thus the velocity components of the external 

flow are defined by 
2V 

u,= -- 
r ’ 

Q z - + ctg -$ (1.7) 

In the case of a strong jet and angles (!I such that sin’/,8 .> C.Z /‘t’, where a =~ 

32v2p / (31,) and I,, is the jet momentum, formula (1.7) is exactly the same as the 

solution derived in [ 11. 
Solution (1.7) for the radial velocity component (curve 1) is shown in Fig. 1. Curves 

2 and 3 in that figure represent, respectively, the exact solution of the complete Navier- 
Stokes equations and the solution of equations of the boundary layer [4]. Numerical cal- 
culations were carried out for a === 0.25 and U, --I 2v’r. 

2. External flow induced by a jet flowing along the rxis of a 
conical diffuser with a 2p vertex angle. We determine the unknown 
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sonstants A,, AZ, A, and A, of solution (1.4), using the following boundary conditions: 
velocity components must vanish for 0 = p and V, must be bounded for 8 = 0 . We 

have 
A, = 2A,cos:, A, = -A, (1 + cos2(3), n .$ = 0 (2.1) 

Substituting (2.1) into (1.4), we obtain 

rp=- -& (cos 8 - cos p)” 

With the use of (1.6) we determine Al =sinm4 ‘/2p. As the result, the velocity com- 

ponents take the form 

V 
ue = - T sin4 & sin 6 (cos 8 - cos P)” V-2) 

In the considered case I~ # 0, and solution (2.2) is valid, when I~ / I, < 1. From 

this we can obtain the condition a < 2/, (1 - cos j3) which defines the limit of the 
diffuser cone-angle. 

Fig, 1 Fig. 2 

Curve I in Fig. 2 represents solution (2.2) for the external flow induced by the jet for 
p = n/2 , while curve 2 represents the solution obtained in [2] for 1, -+ cc . Curve 

3 was obtained by solving equations of the boundary layer [4] for a = 0.1. 
It should be pointed out that the difference between curves 1 and 2 is explained by 

that the solutions derived in p, 31 do not satisfy the no-slip condition at the diffuser 

wall. 

3, External flow induced by L jet flowing from L plans #lot, 
We introduce a system of polar coordinates rq with origin at the jet outlet and angle 
cp measured from the jet axis. The linearized equation of motion for the stream func- 
tion I# is of the form 

A2$=O; v,.=+$, ati v,= -7&- (3.1) 

Taking into account the solution obtained in [S], we seek the stream function $ in the 
form 
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3- 

7c) = 1.65 d + r F (cp) (3.2) 

The substitution of (3.2) into (3.1) yields for F 

F’V + 26/9F” + “blR,F = 0 

The general solution of this equation is of the form 

F = B,sinb/srp + Bzcos61,rp + B,sidl,cp + B~cos’l,rp 

where Bi, B,, B, and B, are constants of integration. 
let us first consider the case in which the jet propagates in an unbounded space. We 

specify the following boundary conditions : 

77,= 0, v, = - 1.65 cp=o 

Assuming that the intensity of fluid suction into the jet is known [5], for B,, B,, B, 
and B, we obtain the system of equations 

5B, + B, = O? B, + B, = 1 (3.3) 
- f3B, + B, + v/5B, + B, = 0 

- 25Jf/3B, + 25B, $1/3B, + B, = 0 

Having determined B,, B,, B, and B, with the use of system (3.3), we calculate II, 
by formula 

If the jet propagates in a diffuser with a 2y vertex angle, then, by virtue of the condi- 
tion that velocity components must vanish at the diffuser wall, we have 

B,sins/,y + B,cosbl,y + B3sin1i3y f B&osllsy = 0 (3.4) 

5B,cosbl,y -- ~B,sinbl,y + B,cos’l,y - Bkn’/Sy = 0 

Conditions for cp = 0 remain unchanged. 
In the case of a jet flowing from a plane wall (y = rt / 2) from (3.4) with allow- 

ance for (3.3) we have 

1.65 
*=22\ 

y vlo p r [3 f/3(5 sin l/scp - sin5/3rp) + (17 cos ‘/aP + 5 coa ‘;a cP)l 

These examples show that the proposed method can be used for the determination of 

external flows induced by jets. 
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A method is proposed for investigating the behavior of an elastic flat panel of 
aircraft wing skin in a stream of gas under transient conditions. The panel is 

assumed to have an initial deflection. The solution is based on the wave equa- 
tion of linearized unsteady aerodynamics and the geometrically nonlinear equa- 
tions of the theory of elastic plates [ 11. The resolving equations which define 

the behavior of an elastic system are derived with the use of the Bubnov-Galer- 
kin procedure with respect to one of the coordinates and of the method of finite 
differences with respect to the other coordinate and time. As an example, the 

supersonic flow past a wing is considered. Aerodynamic pressure distribution 
over the panel surface is determined, using a thin lift surface as the model, by 
the numerical method of retarded source potential, taking into consideration 
previous history of the deformation process p]. 

Let a wing of rectangular plan form, moving in the direction of its axis of symmetry 
at velocity U, and zero angle of attack in a perfect compressible fluid, be subjected 
at instant t = 0 to small additional transient motions caused by instantaneous varia- 
tion of the angle of attack ix induced by vertical gusts. It is assumed that in the follow- 
ing instants individual sections of the wing skin begin to distort, and that the flow around 
the wing is streamlined. 

Let us analyze the dynamic reaction of an elastic system subjected to a sudden change 
of stream parameters on the example of a flat wing skin panel section of sides a and b 

and thickness h (Fig. 1). Let us assume that this plate is attached by hinges to the struc- 
ture reinforcing members, is loaded in its plane by compressive stresses p, has an initial 
deflection, and lies in the downstream Mach cone. Note that in this case the end effects 
and the vortex sheet do not affect pressure distribution over the panel surface. The 


